Comparative study of five Legume species based on De Novo Sequence Assembly and Annotation  

Sagar S. Patel1 , Dipti B. Shah1 , Hetalkumar J. Panchal2
1. G. H. Patel Post Graduate Department of Computer Science and Technology, Sardar Patel University, Vallabh Vidyanagar, Gujarat-388120, India
2. Gujarat Agricultural Biotechnology Institute, Navsari Agricultural University, Surat, Gujarat- 395007, India
Author    Correspondence author
Computational Molecular Biology, 2014, Vol. 4, No. 9   doi: 10.5376/cmb.2014.04.0009
Received: 03 Sep., 2014    Accepted: 25 Sep., 2014    Published: 23 Oct., 2014
© 2014 BioPublisher Publishing Platform
This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Preferred citation for this article:

Patel et al., 2014, Comparative study of five Legume species based on De Novo Sequence Assembly and Annotation, Computational Molecular Biology, Vol.4, No.9, 1-6 (doi: 10.5376/cmb.2014.04.0009)


Legume species are an important oilseed crop in tropical and subtropical regions of the world. Recently, next-generation sequencing technology, termed RNA-seq, has provided a powerful approach for analysing the Transcriptome. This study is focus on RNA-seq of five legume species which are Arachis hypogaea L. (The peanut) of SRR1212866, Cicer arietinum L. of SRR627764, Phaseolus vulgaris L. of SRR1283084, Trigonella foenum-graecum L. of SRR066197 and Vicia sativa L. of SRR403901 from NCBI database. Comparative study focuses on various important features like; reads were generated with N50, sequence assembly contigs which is further searched with known proteins and genes; among these, how many genes were annotated with gene ontology (GO) functional categories and sequences mapped to pathways by searching against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). These data will be useful for gene discovery and functional studies and the large number of transcripts reported in the current study will serve as a valuable genetic resource of these five legume species.

De Novo assembly; Bioinformatics; Legume species; Sequence Assembly and Annotation
[Full-Text PDF] [Full-Flipping PDF] [Full-Text HTML]
Computational Molecular Biology
• Volume 4
View Options
. PDF(624KB)
. Online fPDF
Associated material
. Readers' comments
Other articles by authors
. Sagar S. Patel
. Dipti B. Shah
. Hetalkumar J. Panchal
Related articles
. De Novo assembly
. Bioinformatics
. Legume species
. Sequence Assembly and Annotation
. Email to a friend
. Post a comment